After clickers score distribution: lab and final exam are not included

Historical average means for the final (worth 30 % of the grade): [these are final exam only: so if you are below A/B line you need to do better than 80, for example]

80 or above : A 65 or above : B 50 or above : C

Final Exam Review:

Monday, 12/5: Noon-2 pm, Pegasus Ballroom:

Masa will be leading this review session with help from Zach.

Notes from the review session will be posted on the website by Monday evening

Exam week office hours:

Tuesday: 10:30-11:30 am, 5:00-8:00 pm

I am also available by email: ishigami@ucf.edu, ishigami@ucf.edu

Brief comment on power dissipated in a RLC circuit

$$P_{\max} = I_{\max}^2 R$$

What happens to the Ampere's law at the capacitor?

$$\oint E \cdot dA = \frac{Q_{enc}}{\mathcal{E}_0}$$
 Gauss's Law

$$\oint B \cdot dA = 0$$

$$\oint E \cdot dS = -\frac{d\Phi_B}{dt}$$
 Faraday's Law

$$\oint B \cdot dS = \mu_0 I + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$$
 Ampere's law (with modifications)

Use Divergence and Stoke's theorems to simplify

$$\oint E \cdot dA = \int (\nabla \cdot E) \, dV = \frac{Q_{enc}}{\varepsilon_0} = \frac{\int \rho \, dV}{\varepsilon_0}$$

$$\oint E \cdot dS = \int (\nabla \times E) dA = -\frac{d\Phi_B}{dt} = -\frac{d}{dt} \int B dA$$

$$\nabla \cdot E = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot B = 0$$

$$\nabla \times E = -\frac{dB}{dt}$$

$$\nabla \times B = \mu_0 J + \mu_0 \varepsilon_0 \frac{dE}{dt}$$

